Visual descriptors for content-based retrieval of remote sensing images
نویسنده
چکیده
In this paper we present an extensive evaluation of visual descriptors for the content-based retrieval of remote sensing images. The evaluation includes global, local, and Convolutional Neural Network (CNNs) features coupled with three different Content-Based Image Retrieval schemas. We conducted all the experiments on two publicly available datasets: the 21class UC Merced Land Use/Land Cover data set and 19-class High-resolution Satellite Scene dataset. Results demonstrate that features extracted from CNNs are the best performing whatever is the retrieval schema adopted. Local descriptors perform better than CNN-based descriptors only when dealing with images that contain fine-grained textures or objects.
منابع مشابه
Evaluating the Potential of Texture and Color Descriptors for Remote Sensing Image Retrieval and Classification
Classifying Remote Sensing Images (RSI) is a hard task. There are automatic approaches whose results normally need to be revised. The identification and polygon extraction tasks usually rely on applying classification strategies that exploit visual aspects related to spectral and texture patterns identified in RSI regions. There are a lot of image descriptors proposed in the literature for cont...
متن کاملRemote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)
Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...
متن کاملRemote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)
Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...
متن کاملA novel remote sensing image retrieval method based on visual salient point features
Purpose – This paper aims to present a novel feature design that is able to precisely describe salient objects in images. With the development of space survey, sensor and information acquisition technologies, more complex objects appear in high-resolution remote sensing images. Traditional visual features are no longer precise enough to describe the images. Design/methodology/approach – A novel...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1602.00970 شماره
صفحات -
تاریخ انتشار 2016